Redox-sensitive GFP fusions for monitoring the catalytic mechanism and inactivation of peroxiredoxins in living cells
نویسندگان
چکیده
Redox-sensitive green fluorescent protein 2 (roGFP2) is a valuable tool for redox measurements in living cells. Here, we demonstrate that roGFP2 can also be used to gain mechanistic insights into redox catalysis in vivo. In vitro enzyme properties such as the rate-limiting reduction of wild type and mutant forms of the model peroxiredoxin PfAOP are shown to correlate with the ratiometrically measured degree of oxidation of corresponding roGFP2 fusion proteins. Furthermore, stopped-flow kinetic measurements of the oxidative half-reaction of PfAOP support the interpretation that changes in the roGFP2 signal can be used to map hyperoxidation-based inactivation of the attached peroxidase. Potential future applications of our system include the improvement of redox sensors, the estimation of absolute intracellular peroxide concentrations and the in vivo assessment of protein structure-function relationships that cannot easily be addressed with recombinant enzymes, for example, the effect of post-translational protein modifications on enzyme catalysis.
منابع مشابه
Biochemical characterization of 2-Cys peroxiredoxins from Schistosoma mansoni.
Peroxiredoxins are a large family of peroxidases that have important antioxidant and cell signaling functions. Genes encoding two novel 2-cysteine peroxiredoxin proteins were identified in the expressed sequence tag data base of the helminth parasite Schistosoma mansoni, a causative agent of schistosomiasis. The recombinant proteins showed peroxidase activity in vitro with a variety of hydroper...
متن کاملA NOVEL AND HIGHLY SENSITIVE CATALYTIC METHOD FOR THE DETERMINATION OF ULTRA TRACE AMOUNTS OF CERIUM WITH SPECTROPHOTOMETRIC DETECTION
Cerium (IV) has a catalytic effect on the very slow redox reaction between gallocyanine and bromate in acidic media. The reaction was monitored spectrophotometrically at 525 nm by a fixed time method of 4.0 rnin from initiation of the reaction. The decrease in absorbance at 525 nm is proportional to the Ce (IV) concentration in the range of 0.005-1.000 and 1.00-10.00 pg. ml-l. The limit of ...
متن کاملStructure, mechanism and regulation of peroxiredoxins.
Peroxiredoxins (Prxs) are a ubiquitous family of antioxidant enzymes that also control cytokine-induced peroxide levels which mediate signal transduction in mammalian cells. Prxs can be regulated by changes to phosphorylation, redox and possibly oligomerization states. Prxs are divided into three classes: typical 2-Cys Prxs; atypical 2-Cys Prxs; and 1-Cys Prxs. All Prxs share the same basic cat...
متن کاملInvestigation of an Optimized Context for the Expression of GFP as a Reporter Gene in Chlamydomonas Reinhardtii
Background: Chlamydomonas reinhardtii is a novel recombinant eukaryotic expression system with many advantages including fast growth rate, rapid scalability, absence of human pathogens and the ability to fold and assemble complex proteins accurately, however, obstacle relatively low expression level necessitates optimizing foreign gene expression in this system. The Green Fluorescent Protein (G...
متن کامل2-Cys Peroxiredoxins: Emerging Hubs Determining Redox Dependency of Mammalian Signaling Networks
Mammalian cells have a well-defined set of antioxidant enzymes, which includes superoxide dismutases, catalase, glutathione peroxidases, and peroxiredoxins. Peroxiredoxins are the most recently identified family of antioxidant enzymes that catalyze the reduction reaction of peroxides, such as H2O2. In particular, typical 2-Cys peroxiredoxins are the featured peroxidase enzymes that receive the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 14 شماره
صفحات -
تاریخ انتشار 2018